Top 12 Open Source Code Security Tools
Open source software is everywhere. From your server to your fitness band. And it’s only becoming more common as over 90% of developers acknowledge using open
Kubernetes powers significant automation capabilities for developers in deploying, managing, scaling, and ensuring the availability of containerized apps. Data from 2021 shows that adoption continues to rise with over 5.6 million developers now using the industry’s favored container orchestration engine.
However, Kubernetes and containerization introduce new complexities that pose unique security challenges. In fact, Red Hat’s 2021 State of Kubernetes Security report found that security is the top concern in container strategies, with 94% of respondents experiencing at least one security incident in their Kubernetes environments over the previous 12 months.
To maintain the agility realized by containerized development and ensure security issues don’t creep into Kubernetes production environments, it’s critical to use this tool within the context of an effective security policy. But what would such a policy look like? Read on to get four top tips for ensuring airtight Kubernetes security.
Returning to the Red Hat report referenced in the intro, real-world data provides useful insight into the most common Kubernetes security concerns. From the perspective of DevOps, engineering, and security professionals, the four most common security concerns cited about Kubernetes environments were:
The declarative nature of container orchestration lends to significant misconfiguration risks that opportunistic threat actors could exploit. These risks may increase the attack surface for your cloud-native applications or even expose sensitive data. The prevalence of this concern mirrors the fact that human error is the number one modern cybersecurity threat to businesses.
Default Kubernetes settings don’t provide the security you need. It’s all too easy to get so caught up in the race for agility that you let these defaults go unchecked into production environments. Whether it’s unnecessarily running a container as root or allowing scripts/shell commands inside containers, vulnerable deployments are just one misconfiguration away.
The second most prominent concern makes sense given that many of the misconfiguration errors in the build phase will only become evident during runtime after containers have been deployed. The security incidents during runtime could include hidden malware activating inside container images, privilege escalation attacks, or weak access controls allowing unauthorized containers to run. While it’s clearly important to build security into all stages of the development and orchestration pipeline, neglecting runtime security removes a last layer of defense to deal with security threats in Kubernetes environments.
This concern is somewhat self-explanatory. Major vulnerabilities are severe flaws that could lead to the worst business outcomes, such as data loss/breach or extended application downtime. Remediating major vulnerabilities quickly goes to the top of the priority list which can delay feature upgrades or application rollout.
Businesses today need to comply with a veritable alphabet soup of data privacy regulations. Breaches of these regulations can lead to hefty fines and reputational damage. An audit of Kubernetes logs can uncover compliance issues in your container ecosystems. Such a finding is clearly concerning because it highlights compliance failures in your development environments.
The first reason to care about Kubernetes security is that it directly influences your work as a developer. The agility promised by container orchestration quickly reduces when security issues begin to interfere with build and deployment workflows.
Another broader business reason is that security weaknesses left unaddressed in production environments can lead to serious data breaches. In a world where the average data breach costs $4.24 million, this is not a tolerable outcome for most businesses. And this cost doesn’t even account for the reputational damage inflicted by media spotlights that highlight any insecure development practices that led to the breach.
There is a lot to cover when it comes to Kubernetes security, but nailing down these four tips provides an excellent foundation for a more secure container ecosystem.
Somewhat of a paradox emerges when developers ignore security in favor of agility. The traditional perception of security is that it hampers development agility. But the emergence and detection of security issues during Kubernetes app deployment ultimately slows everything down and delays rollout as issues that could’ve been found and remediated earlier are only found later.
The answer lies in adopting a DevSecOps approach that incorporates security as a fundamental aspect of all stages in the application development life cycle. Actually implementing DevSecOps calls for automating early and often because efficiently finding security issues as early as possible is the ideal approach. Automated code security tools can prove invaluable by finding harmful security errors in code, Kubernetes configurations, and other artifacts in real-time throughout the development life cycle.
Whether you’re tweaking something in the control plane, worker nodes, or building a container image from your own code, the components of Kubernetes architecture are susceptible to a slew of different misconfiguration risks. These risks include insecure ports and excessive permissions.
Once again, reliance on manual human intervention to find misconfiguration issues across the complex ecosystem of a Kubernetes application is not a very practical approach. A single workload may have multiple configurations; multiply this by dozens of workloads and manually hunting for security risks this way will quickly stretch your resources, no matter how many people you have handling application security.
A better way to watch for misconfigurations is to have AI do it for you. Ideally, you’ll use an AI-powered scanning engine that monitors for and detects security misconfigurations.
Kubernetes secrets provide the authorization, authentication credentials, and keys that allow access to the resources that your applications need to run properly. These resources could include sensitive databases, other applications, or surrounding infrastructure. Since the secrets are decoupled from the application’s code and stored as objects, the application doesn’t need to keep the contents of the secret.
This decoupling makes the required resources accessible without needing to store secret contents in container images or pod definitions and expose them to unnecessary visibility. While Kubernetes secrets can prove extremely useful, you should still scan for authorization, authentication credentials, and keys that might accidentally make it into source code repositories, containers, and pods. For more detail on using Kubernetes secrets, including how to set them up, check out this resource.
The adoption of Kubernetes looks set to continue as more organizations seek to reduce IT costs by over 20 percent. Other more technical Kubernetes benefits are well-known to developers, but this bottom-line impact often grabs the attention of key decision-makers. What also needs to capture attention is that blind adoption without corresponding investments in security tools and strategies that strengthen Kubernetes security is likely to prove costly in the long run.
Some relevant tool types and strategies to better secure Kubernetes environments include:
Whether you orchestrate container workloads in Kubernetes for internal enterprise use or customer-facing apps, an overarching strategic benefit underpinning this type of development is to fuel modern digital transformation strategies. But without adequately integrating security into your workflows, security issues will hamper the success of these efforts.
Start strengthening your Kubernetes security policy and ship software without worry by leveraging SpectralOps’ developer-first automated code security scanner. Eliminate common security threats, such as data leakage, misconfigurations, and exposed secrets. Create your free account today.
Open source software is everywhere. From your server to your fitness band. And it’s only becoming more common as over 90% of developers acknowledge using open
It’s easy to think that our code is secure. Vulnerabilities or potential exploits are often the things we think about last. Most of the time, our
Continuous integration and delivery are necessary in any production level software development process. CI/CD are more than just buzzwords. Rather, it is a fully-fledged methodology of